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Stability domains for time-delay feedback control with latency
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~Received 18 February 2003; published 11 September 2003!

We generalize a known analytical method for determining the stability of periodic orbits controlled by
time-delay feedback methods when latencies associated with the generation and injection of the feedback
signal cannot be ignored. We discuss the case of extended time-delay autosynchronization and show that
nontrivial qualitative features of the domain of control observed in experiments can be explained by taking into
account the effects of both the unstable eigenmode and a single stable eigenmode in the Floquet theory.
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I. INTRODUCTION

Throughout the last decade the use of time-delayed
nals for controlling unstable periodic orbits~UPOs! has been
a field of increasing interest. A method first introduced
Pyragas@1#, known as ‘‘time-delay autosynchronization
~TDAS!, calculates the control force from the difference
the current state to the state one period in the past. Soc
et al. @2# have shown that this technique can be improved
using states further in the past. This generalization of TD
is called ‘‘extended time-delay autosynchronizatio
~ETDAS!. One great advantage of ETDAS over conve
tional feedback controller schemes is that it can be applie
high frequency oscillators. Since it employs a direct co
parison of continuous signals generated by the system it
the only factors limiting the speed of the controller are t
bandwidth of the amplifiers and signal propagation tim
There is no need to generate a reference signal inde
dently.

Experiments on electronic oscillators have shown t
ETDAS can be effective@3#. They also show, however, tha
the latency time associated with signal propagation—
time required to compare the current signal with its tim
delayed counterpart and inject the feedback into
system—can have important effects. Just@4# has shown how
longer latency times decrease the range of feedback g
over which control is achieved for simple systems control
by TDAS. Here we extend his analytic formalism, whic
consists of a first-order perturbation theory in the gain,
ETDAS and note some novel features of the behavior of
individual Floquet multipliers. We then show how the theo
provides a qualitative explanation of the shape of the dom
of control observed in the experiments of Sukowet al. @3#.

II. SYSTEM EQUATIONS AND PERTURBATION THEORY

In this section we review the formalism developed
Just, generalizing it to the case of ETDAS controllers. W
use the same notation as Bleich and Socolar@5# for the sys-
tem equations and feedback signal and the notation of
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@4# for the Floquet theory parameters.
Consider anN-dimensional dynamical system defined b

ẋ~ t !5f„x~ t !,e01e~ t !…, ~1!

where x(t) denotes anN-dimensional state vector,e0 is a
parameter that can be modulated to achieve control, ande is
a feedback signal. Assume that in the absence of con
e(t)50, there exists an unstable periodic orbitx0(t) with

periodt. Let j(t)5n̂•x(t) be a component ofx that can be

continuously measured. The unit vectorn̂ may be determined
by the structure of the system. For example, if only o
system variable can be measured,n̂ has zeros in every posi
tion except the one corresponding to that variable. More g
erally, n̂ can be chosen to optimize some property of t
controller.

The ETDAS feedback signal can be written in seve
equivalent forms@2,5,6#:

e~ t !5g(
k51

`

Rk@j~ t2t l2kt!2j„t2t l2~k11!t…#

5gF j~ t2t l !2~12R!(
k51

`

Rk21j~ t2t l2kt!G
5g@j~ t2t l !2j~ t2t l2t!#1Re~ t2t!, ~2!

whereg ~the feedback gain! andRP(21,1) are real param-
eters andt l is the latency time. From the first form, it is clea
that the control force vanishes if the UPO is stabilized, sin
j(t2t)5j(t) for all t when the system is periodic with pe
riod t; the second form is the basis for simple implemen
tion of ETDAS in experiments@3#; and the third form is
useful for the calculation below. TDAS corresponds to t
special caseR50.

In order to determine whether the controlled orbit
stable, Eq.~1! is linearized around the UPO. Defining th
small deviationy(t)[x(t)2x0(t), we have
©2003 The American Physical Society06-1
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ẏ~ t !5J~ t !•y~ t !1e~ t !
]f

]e U
x0(t),e50

5J~ t !•y~ t !1gM ~ t !

3Fy~ t2t l !2~12R!(
k51

`

Rk21y~ t2t l2kt!G , ~3!

whereJ(t)5J(t)ux0(t),e50 denotes the Jacobian matrix of th

uncontrolled system andM (t)5(]f/]e)ux0(t),e50^ n̂ is an

N3N matrix containing all information about the contr
force.

Since J(t) and M (t) are both periodic with periodt,
Floquet theory ensures thaty(t) can be written as

y~ t !5 (
m50

`

(
n51

N

cm
(n)e(Lm

(n)
1 iVm

(n))tpm
(n)~ t !, ~4!

wherepm
(n)(t) is a periodic function with periodt:

pm
(n)~ t !5pm

(n)~ t1t!. ~5!

The factorization of the sum into a double sum is done
convenience in the discussions below. In the absence of
trol, i.e., the absence of time-delay terms, there areN eigen-
modes of the system, indexed byn. When control is turned
on, each of these gives rise to a countably infinite set
eigenmodes indexed bym. For each set, there is one eige
value that begins at the original valuel (n)1 iv (n) for g50
and varies asg is increased. The remaining members
have eigenvalues that approach either lnuRu/t or 2` as g
approaches 0.

Lm
(n) and Vm

(n) are the real and imaginary parts of th
Floquet exponent corresponding to the eigenmodepm

(n)(t).
Inserting Eq.~4! into Eq.~3! will lead to conditions that mus
be satisfied byLm

(n) andVm
(n) . The system is linearly stable i

and only if allLm
(n) that satisfy these conditions are negativ

Equations~3! and ~4! yield the following equation for each
of the modespm

(n)(t), where we drop the subscriptm and
superscriptn for notational convenience:

~L1 iV!p~ t !1ṗ~ t !

5J~ t !•p~ t !1ge2(L1 iV)t l
12e2(L1 iV)t

12Re2(L1 iV)t
M ~ t !•p~ t2t l !.

~6!

This equation is equivalent to

~L1 iV!p~ t;k!1ṗ~ t;k!

5@J~ t !1kM ~ t !W~ t,2t l !#•p~ t;k!, ~7!

where W(t,Dt) is the propagator defined byp(t;k)
5W(t,Dt)•p(t2Dt;k) and
03620
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k[ge2(L1 iV)t l
12e2(L1 iV)t

12Re2(L1 iV)t
. ~8!

Sincek is proportional tog, it can be loosely thought of a
a measure of the strength of the control gain. One must k
in mind, however, that the value ofk is ultimately deter-
mined by the solutions for the exponentL1 iV. Note also
that the Floquet eigenmodesp(t;k) themselves depend o
L1 iV throughk, making for a nontrivial modification of
the usual eigenvalue problem.

An expression taking the effects of control into accou
can be derived by perturbation theory. Equation~7! can be
written as

~L1 iV!p~ t;k!5F2
d

dt
1J~ t !1kM ~ t !W~ t,2t l !G•p~ t;k!.

~9!

We regard2(d/dt)1J(t) as an operator with known eigen
valuesl (n)5 iv (n) and considerkM (t)•W(t,2t l) to be a
perturbation, a technique familiar from quantum mechan
The effects of the controller on the Floquet exponents can
expanded in powers ofk as

L1 iV5l1 iv1x~ t l !k1o~k2!, ~10!

where the coefficientx(t l) is a complex valued function
Any effects of interactions between the Floquet modes e
only at k2. This is why it is convenient to index the mode
by n and m for the purposes of the first-order perturbatio
theory.

As mentioned above, Eq.~10! has an infinite number o
solutions forL andV which approach lnuRu/t @7,8# or minus
infinity as the feedback gaing goes to zero. This behavio
arises from the essential singularity atL5 lnuRu/t and the
divergence atL52`, the latter arising only due to the non
zero latency time.

FIG. 1. Real and imaginary parts of the Floquet exponent vg
for lt51 and vt5p. Thick lines correspond to a latency tim
t l50 and thin lines tot l50.5t for different values ofR: 0 ~TDAS!,
0.15, 0.25. The solid line represents the system’s exponent and
dashed line represents the exponent created by the control sch
6-2
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FIG. 2. Schematic behavior o
the multiplier m in the complex
plane for g.0 and t l50 in the
casev5p/t. Panels~a! and ~b!
illustrate the case of an initially
unstable multiplier of the system
panels ~c! and ~d! illustrate the
case of an initially stable one
Point A indicates the uncontrolled
multiplier of the system m
52exp(lt), pointB shows where
the created multipliers start, poin
C is the point where control is ob
tained, and pointsD and D ’ are
the points where control is lost
The arrows indicate the direction
in which the multipliers move for
increasingg.
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Just@4# has shown how the coefficientx(t l) can be cal-
culated. Letu(t)5p(t;k50) and v* (t) be the right and
left Floquet eigenmodes in the absence of control,k50.
Both are periodic with periodt, i.e., u(t)5u(t1t) and
v* (t)5v* (t1t). Now let û(t)5exp(ivt)u(t) and
v̂* (t)5exp(2ivt)v* (t). These satisfy the equations

lû~ t !1 u̇̂~ t !5J~ t !•û~ t !,

l v̂* ~ t !2 v̇̂* ~ t !5 v̂* ~ t !•J~ t !, ~11!

with the boundary conditons:

û~ t1t!5eivtû~ t !,

v̂* ~ t1t!5e2 ivtv̂* ~ t !. ~12!

The standard first-order perturbation theory result for
coefficientx(t l) is

x~ t l !5eivt lr~ t l !, ~13!

where

r~ t l !5

E
0

t

v̂* ~ t !M ~ t !•W~ t,2t l !û~ t !dt

E
0

t

v̂* ~ t !û~ t !dt

. ~14!

Now r(t l) depends ont l only throughW, and sinceu(t) is
t periodic, W(t,2t l1t)u(t)5W(t,2t l)u(t). Therefore,
r(t l) has to satisfy

r~ t l1t!5e2 ivtr~ t l !. ~15!
03620
e

Inserting Eq.~13! in Eq. ~10! and neglecting second-orde
terms yields

L1 iV5l1 iv1r~ t l !ge2[L1 i (V2v)] t l
12e2(L1 iV)t

12Re2(L1 iV)t
.

~16!

Following the treatment of Just@4# for theR50 case, we
note that this expression can be simplified in the case o
so-called flip orbit wherev5p/t. Defining the frequency
deviationDV5V2p/t, Eq. ~16! can be rewritten as

L1 iDV5l1r~ t l !g e2(L1 iDV)t l
11e2(L1 iDV)t

11R e2(L1 iDV)t
.

~17!

Moreover, since all coefficients in Eq.~11! are real, and
for v5p/t the boundary conditions of Eq.~12! are invariant
under complex conjugation,û(t) and v̂* (t) can always be
chosen to be real valued. From Eq.~14! it is then clear that
r(t l) is real and from Eq.~15! we haver(t l)52r(t l1t).

We emphasize thatû(t), v̂* (t), and r(t l) are also real
valued in the case of zero torsion, i.e.,v50. In this case,
x(t l)5r(t l) and r is t periodic: r(t l)5r(t l1t). For
torsion-free perturbations, Eq.~16! becomes

L1 iV5l1x~ t l !ge2(L1 iV)t l
12e2(L1 iV)t

12Re2(L1 iV)t
. ~18!

Although a nonzero torsion of all unstable eigenmodes i
necessary condition for possible control@9#, the case of
l,0 and v50 might be interesting because an initial
stable eigenmode can become unstable when the co
force is applied and thus limit the domain of control.
6-3
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III. FLOQUET EXPONENTS FOR FIXED LATENCY TIME

To understand the solutions to Eq.~17!, it is helpful to
first consider their behavior for fixed values o
g[2r(t l)g. A detailed discussion of the effects of varia
tions of r with t l will be presented in Sec. IV.

The behavior of the real and imaginary parts of the Fl
quet exponent in Eq.~17! can be seen in Fig. 1. In each
panel, curves are shown for botht l50 ~thick lines! and t l
5t/2 ~thin lines!. For g50 ~no control!, the real partL is
equal tol. For increasingg the value ofL decreases, reach-
ing 0 atg5l(11R)/2, and then changing its sign; thus th
orbit becomes stable. Further increase ofg usually leads to a
collision with an exponent created by the control schem
forming a complex conjugate pair@see Figs. 1~b!, 1~d!, and
1~f!, except for the thick line in Fig. 1~f!#. After the collision,
L then begins to increase@see Figs. 1~a!, 1~c!, and 1~e!,
except for the thick line in Fig. 1~e!#. Forg sufficiently large,
L becomes positive again and control is lost.

Note that asg increases from zero, an infinite number o
solutions to Eq.~17! emerge from lnuRu/t as complex conju-
gate pairs@7,8#. In order to collide with the single exponen
coming from (l1 iv)t, one pair has to become real an
separate@see Fig. 1~d!#. If this does not happen, a crossing o
branches can occur. After the crossing, the complex con
gate pair becomes the branch with the largestL and thus
responsible for the stability of the system@see thick lines in
Figs. 1~e! and 1~f!#.

Figure 1 illustrates that increasing the latency timet l
and/or decreasingR leads to a smaller range ofg for success-
ful control. In fact, one can compute a maximum latenc
time tmax for which control can be achieved, which corre
sponds to the case where the collision of the two branch
occurs atL50 as in the thin line in Fig 1~a!. Using the
imaginary part of Eq.~17! to eliminate the factor ofg in the
real part of the same equation and settingL equal to zero,
one has to search for nontrivial solutions forDV. A condi-
tion for the existence of such a solution is

t l<tmax5
1

l
1

t

2

R21

R11
. ~19!

This agrees with the result of Ref.@4# for R50. For larger
latency time, control is not possible to first order ink. Equa-

FIG. 3. Domain of control in thet l-g plane for different values
for lt:20.3,0.7,1.5 andr(t l)521. Panel~a! shows the case of
TDAS, R50, and panel~b! the case ofR50.68. The branches
indicate combinations fort l and g for which the real part of the
Floquet exponentL changes sign and thus stability.
03620
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tion ~19! shows that negativeR decreases the maximum la
tency time. We therefore focus onR>0 from here on.

Another way to visualize the effects of the control sche
is to consider how the Floquetmultipliers ~as opposed to
exponents! evolve with varying g. We consider again
the casev5p/t. The Floquet multipliers are defined b

mm
(n)5e(Lm

(n)
1 iDVm

(n))t. Dropping the subscriptm and the su-
perscriptn, Eq. ~17! can be rewritten as

m5expFlt2gtS m11

m1RDm2t l /tG . ~20!

Stability is achieved if all multipliers satisfyumu,1, i.e., the
multipliersm are located inside the unit circle in the comple
plane.

Considering the real and imaginary parts of Eq.~20! and
numerically following the roots of each equation in the co
plex plane~usingMATHEMATICA !, we observe the following
four topologically different cases depending on the signs
l andg in the absence of latency,t l50, as illustrated in Fig.
2.

~1! g.0;l.0: @Figs. 2~a! and 2~b!# As g increases, the
largest Floquet multiplier starts outside the unit circle
2exp(lt) on the real axis indicated by pointA, moves to-
wards the unit circle, and eventually crosses it. Meanwh
an infinite number of complex conjugate pairs spread
from m5R indicated by pointB, one of which will deter-
mine the stability range. Two scenarios are possible. O
possibility is that one pair recombines on the real axis a
one of the multipliers collides with the multiplier originatin
at pointA. After the collision they form a complex conjugat
pair and cross the unit circle again@see Fig. 2~a!#. The other
possibilitiy is that the created pair becomes the largest m
tiplier, turns around, and crosses the unit circle@see Fig.
2~b!#. The first case corresponds to the thick lines in Fi
1~c! and 1~d!, the second to Figs. 1~e! and 1~f!.

~2! g.0;l,0: @Figs. 2~c! and 2~d!# Similar to the previ-
ous case, the largest Floquet multiplier starts at2exp(lt) on
the real axis, this time inside the unit circle. It moves towa
the origin for increasingg and may either collide with a
multiplier created by the control force as in Fig. 2~c! or con-
tinue towards zero, while a complex conjugate pair becom

FIG. 4. Domain of control in thet l-g plane forR50 in the case
of r(t l)5A sin@(p/t)tl2f#. Panel~a! shows the case of an UPO
(lt51) with A52.5 for different values of the phasef:
0.1p,0.3p,0.9p. Panel~b! shows the case of a stable orbit (lt
520.3) with A50.6 for f: 0,0.7p. The shaded regions show th
domain of stability forf50.3p andf50, respectively.
6-4
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FIG. 5. Domains of control in thet l-g plane. Panels~a! and~b!: Experimental result from a diode resonator circuit investigated by Su
et al. This is a reproduction of Fig. 18 from Ref.@3#. In this system, the periodt was equal to 100 ns. The scale for the gain is determi
by the experimental value of the factor]f/]e in Eq. ~3!, which has implicitly been assumed to be unity in our theoretical discussion. P
~c! and ~d!: Domains determined from theory for two Floquet exponents with parameters chosen to reproduce as closely as pos
experimental results of~a! and~b!. The thick and thin dashed lines show the domains corresponding to the two different modes~see Fig. 4.!.
The shaded regions show the combined domain of control. The parameter values arel1t50.7, l2t521.6, v15v25p/t, r1(t l)
51.3 sin@(p/t)tl20.6p#, andr2(t l)51.4 sin@(p/t)tl#. The two panels show different values of the control parameterR. The special latency
times marked are used to determine the parameter values as explained in the text.
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the largest multiplier as in Fig. 2~d!. In both cases all multi-
pliers stay inside the unit circle for increasingg; for l,0 the
system is stable for allg.0.

~3! g,0;l.0: The largest multiplier starts at2exp(lt)
on the real axis and goes to2`, thus control is never suc
cessful. All other multipliers created by the control sche
stay inside the unit circle for decreasingg.

~4! g,0;l,0: The largest multiplier starts inside th
unit circle, crosses it, and goes to2`. More mulitpliers
created by the control scheme cross the unit circle for furt
decrease ofg.

IV. SHAPES OF THE DOMAIN OF CONTROL
IN THE t l-g PLANE

For a discussion of the domain of control in thet l-g plane
let us consider firstr(t l)521. We will show later how the
coefficientr(t l) scales the domain at every value of the
tency time.

For eachl, the lower branch in Fig. 3 is the horizont
line g5l(11R)/2, where there is a flip instability assoc
ated with the real exponent originating froml at g50. The
upper branch corresponds to a Hopf bifurcation that can a
in two different ways:~1! the relevant complex conjugat
pair of exponents originates in a collision between the bra
associated withl and a real eigenvalue created by the fee
back scheme, as in Fig. 1~a! or 1~c!; or ~2! the relevant com-
plex conjugate pair originates at lnuRu/t, as shown by the
thick lines in Fig. 1~d!. It can be seen that increasingR and
decreasingl increases the domain of control at fixedt l and
increasestmax @see Eq.~19!#. The upper and lower curves d
03620
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not intersect if the system is already stable, i.e.,l,0.
The actual domain of control is a distortion of Fig.

owing to the variation ofr with t l . The distortion is simple
to compute, however, since changing the value ofr is en-
tirely equivalent to changingg. Thus the values ofg on the
upper and lower curves at a particular value oft l are simply
multiplied by 21/r(t l). Note that these variations inr can-
not change theratio of the upper and lower values ofg.

For eigenmodes withv5p/t, the antiperiodicity ofr(t l)
and the fact thatr(t l) is real require thatr(t l) has at least
one root in the interval@0,t#. We assume for convenience
sinusoidal formr(t l)5A sin((p/t)tl2f). Figure 4 shows the
domain of control for different values of the phasef. In

FIG. 6. Domain of control for two noninteracting Floquet mod
l1t52, l2t520.3, andv15v25p/t for R50.68. The param-
eters f and A are chosen asf150.65p,A152.5, andf250.1,
A2523. The shaded area is the effective domain of control.
6-5
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each panel, the shading indicates the stable domain for
choice off.

If a root of r(t l) appears before the upper and low
branches intersect, the domain of control will include a
gion with negative feedback gaing, as shown in Fig. 4~a!.
Since the domain of control at fixedt l scales like 1/r, diver-
gences appear at the values of the latency time for wh
r(t l) vanishes. Forl,0, shown in Fig. 4~b!, the upper and
lower branches still do not intersect.

The casel,0 can be important because it can reduce
domain of control, as shown in Figs. 5~c! and 5~d!, when the
uncontrolled system has exponentsl1.0 andl2,0. Since
second-order terms are neglected in the perturbation the
the different Floquet modes of the system do not inter
with each other, so the effective domain of control is just
intersection of the single domains for each exponent.

Domains similar to those shown in Figs. 5~c! and 5~d!
have been observed in experiments on high speed diode
nator circuits. The analogous figure obtained from exp
ments is reproduced here as Figs. 5~a! and 5~b! to facilitate
comparison. To construct the theoretical figure, param
values are adjusted to reproduce several features of the
perimental results. From the experiments, three parame
are known: the weighting parameterR, the largest Lyapunov
exponentl1, and, since the instability is a flip, the frequen
v15p/t. Equation~19! for the l1 mode then gives an im
mediate prediction fortmax, the largest latency time fo
which control can be achieved. The agreement with the
periment is reasonable, especially given that the very nar
tails of the domains may be hard to detect in experimen

We make the plausible assumption that the second lar
Floquet mode is a stable flip, sov25p/t. In our simple
model, there are then five parameters that determine
shapes of the domains of control:l2t ~the real part of the
subleading exponent!, A1 and A2 ~the amplitudes of the
variation in r1 and r2), and the phasesf1 and f2 ~which
determine wherer1 andr2 vanish!.

To fix these five parameters, we consider theR50.68
domain. The phasef1 must lie somewhere betweent1p and
t2p in order for the divergence in 1/r and associated sig
change in the domain of control to be right. From the fa
that the onset of divergence is not evident yet att1, we
estimate thatf1 is close tot2p and fix it at 0.6p. From the
fact that the boundary of the subleading mode does not
pear to cut off the domain neart l50, we take the divergenc
of r2 to occur there, requiringf250 or p. The remaining
parameters,A1 , A2, and l2t are adjusted to fitt1 , t2, the
latency times~in units of t) corresponding to the limits o
the domains, andg(t2), the gain at which the lower domai
of control is cut off att2. The parameters determined fro
the R50.68 data are used for theR50 plot as well since
r(t l) is determined purely from the uncontrolled system.

The primary conclusion we draw is that the theory do
give qualitative insight into the structure of the stability d
mains. Even with our crude constraints on the form ofr(t l),
the general shapes of the domains are reproduced sur
ingly well. As expected, largerR increases the size of th
domain of control, especially the part with negativeg.
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It may appear that by adjusting the full functionsr1 and
r2 one could fit arbitrary shapes of the stability domains, a
it is true that many types of undulations in the doma
boundaries could be fit. Moreover, one can always appea
lack of robustness to noise to explain why very narrow
gions of a predicted stability domain would not show up
the experimental data. There are, however, some feature
the experimental data that cannot be reproduced by
theory presented here. In particular, consider the width of
region at negativeg for R50.68. The upper and lowe
boundaries of the right half of this region both represe
instabilities in the same mode, the mode associated withl1.
For a fixed value oft l , then, the ratio of theg ’s at these
boundaries is independent ofr. The substantially larger
width of the experimental stability domain cannot be o
tained by adjusting any of the parameters in our theory.
cluding additional modes or making a different assumpt
aboutv2 would not help, since the narrowness of the the
retical domain is determined byl1. We therefore conclude
that second-order effects are significant in the experime
system. These effects may involve interactions betw
modes associated with differentl ’s or just interactions of
modes within the set generated byl1 alone.

Our analysis can also be used to explore the possibili
for qualitatively different domain shapes. An interesting e
ample is obtained whenf2, the phase associated with th
subleading mode of the uncontrolled system is taken to
0.1p ~and A2,0). As shown in Fig. 6, this can lead to
situation in which a nonzero latency time isrequired for
effective control.

V. CONCLUSION

We have discussed the effects of latency time on a fe
back control scheme known as ETDAS. Using the Floq
theory and carrying out a first-order perturbation theory
the feedback gain, we have shown that nontrivial dom
shapes can arise in the plane parametrized by feedback
and latency time. Within the first-order theory, we find th
no control is possible above a maximum latency time de
mined solely by the Floquet exponent of the most unsta
mode in the uncontrolled system. We also find that Floq
modes that are stable in the uncontrolled system contrib
significantly to the overall stability picture, reducing the d
main of control substantially.

The theory accounts well for qualitative features of t
stability domains observed in experiments. As expect
larger values of the ETDAS parameterR give larger stability
domains. Detailed comparison indicates, however, t
second-order effects are experimentally observable.
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