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Stability domains for time-delay feedback control with latency
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We generalize a known analytical method for determining the stability of periodic orbits controlled by
time-delay feedback methods when latencies associated with the generation and injection of the feedback
signal cannot be ignored. We discuss the case of extended time-delay autosynchronization and show that
nontrivial qualitative features of the domain of control observed in experiments can be explained by taking into
account the effects of both the unstable eigenmode and a single stable eigenmode in the Floquet theory.
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I. INTRODUCTION [4] for the Floguet theory parameters.
Consider arN-dimensional dynamical system defined by
Throughout the last decade the use of time-delayed sig-
nals for controlling unstable periodic orbitdPOg has been
a field of increasing interest. A method first introduced by k(t)zf(x(t),eoJre(t)), (1)
Pyragas[1], known as “time-delay autosynchronization”
(TDAS), calculates the control force from the difference of

the current state to the state one period in the past. SOCOIWhere x(t) denotes arN-dimensional state vectok, is a
et gl. [2] have ShOWU that this techr_lique can _be improved by arameter that can be modulated to achieve contr%l,eaied
using states further in the past. This generalization of TDAS

is called “extended time-delay autosynchronization” a feedback signa}. Assume that in th.e z_ibsenf:e of .CoerI’
(ETDAS). One great advantage of ETDAS over conven-€() =0, there exists an unstable periodic orki(t) with
tional feedback controller schemes is that it can be applied tgeriod 7. Let §(t)=n-x(t) be a component of that can be
high frequency oscillators. Since it employs a direct com-continuously measured. The unit vectomay be determined
parison of continuous signals generated by the system itselby the structure of the system. For example, if only one
the only factors limiting the speed of the controller are theg, stem variable can be measuradhas zeros in every posi-

bandwidth of the amplifiers and signal propagation timesyjqn except the one corresponding to that variable. More gen-
There is no need to generate a reference signal indepen- ~ e
dently. fe:(r)z?]lgl(,)l?ercan be chosen to optimize some property of the
Experiments on electronic oscillators have shown tha : . . .

ETDAS can be effectivé3]. They also show, however, that The ETDAS feedb:_:\ck signal can be written in several
the latency time associated with signal propagation—theequ'V"’llent formg2.5,6:
time required to compare the current signal with its time-
delayed counterpart and inject the feedback into the
system—can have important effects. Judthas shown how
longer latency times decrease the range of feedback gains

over which control is achieved for simple systems controlled

e<t>=yk§1 RN E(t—t—kr)— &t—t,— (k+1)7)]

by TDAS. Here we extend his analytic formalism, which - ko1

consists of a first-order perturbation theory in the gain, to -7 g(t_tl)_(l_R)gl RTSE(t=t—k7)
ETDAS and note some novel features of the behavior of the

individual Floquet multipliers. We then show how the theory =y[&(t—t)—&(t—t,—7) ]+ Re(t—17), (2

provides a qualitative explanation of the shape of the domain
of control observed in the experiments of Suketal. [3].
wherey (the feedback gajrandRe (—1,1) are real param-
eters and, is the latency time. From the first form, it is clear
that the control force vanishes if the UPO is stabilized, since
In this section we review the formalism developed by &(t— 7)=&(t) for all t when the system is periodic with pe-
Just, generalizing it to the case of ETDAS controllers. Weriod 7; the second form is the basis for simple implementa-
use the same notation as Bleich and Soc@arfor the sys- tion of ETDAS in experimentg3]; and the third form is
tem equations and feedback signal and the notation of Jusiseful for the calculation below. TDAS corresponds to the
special cas&k=0.
In order to determine whether the controlled orbit is
*Permanent address: Instituitr fiheoretische Physik, TU Berlin, stable, Eq.(1) is linearized around the UPO. Defining the
Hardenbergstrasse 36, D-10623 Berlin, Germany. small deviationy(t) =x(t) —Xq(t), we have
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whereJ(t) :J(t)|xo(t),€=o denotes the Jacobian matrix of the

uncontrolled system and!/l(t):(af/ae)|xo(t),€:0®ﬁ is an
NXN matrix containing all information about the control Az
force.

Since J(t) and M(t) are both periodic with period,
Floguet theory ensures thgft) can be written as

' ' .
W N Lo O
T T T

> N M) L () FIG. 1. Real and imaginary parts of the Floquet exponerg vs
y()= > > cWeltm Hi%m)tpM(t), (4)  for A\7=1 andwr=. Thick lines correspond to a latency time
m=0n=1 t,=0 and thin lines td,=0.5r for different values ofR 0 (TDAS),
0.15, 0.25. The solid line represents the system’s exponent and the
wherep{p)(t) is a periodic function with period: dashed line represents the exponent created by the control scheme.

() =pM(t+ —(A+iQ)7
P () =pP(t+ 7). (5) iy, e
K=7ve 1_Re—(A+iQ)T' (8)
The factorization of the sum into a double sum is done for

convenience in the discussions below. In the absence of coRsince « is proportional toy, it can be loosely thought of as

trol, i.e., the absence of time-delay terms, thereMiggen- 5 measure of the strength of the control gain. One must keep
modes of the system, indexed byWhen control is turned mind, however, that the value of is ultimately deter-

on, each of these gives rise to a countably infinite set of,ined by the solutions for the exponehtti(). Note also
eigenmodes indexed by, For each Sﬂr;)thgr?n;s one €igen-hat the Floquet eigenmodext; k) themselves depend on
value that begins at the original valae™ +iw™ for y=0 A 1j0 through«, making for a nontrivial modification of
and varies asy is increased. The remaining members allyna sual eigenvalue problem.

have eigenvalues that approach eithgRlfr or —< as y An expression taking the effects of control into account

apprgr;lches O-(n) o can be derived by perturbation theory. Equati@h can be
Ay’ and Q" are the real and imaginary parts of the yitten as

Floquet exponent corresponding to the eigenmpﬂ‘é(t).
Inserting Eq(4) into Eq.(3) will lead to conditions that must ) ) d )

be satisfied byA (" andQ{" . The system is linearly stable if (A+IQ)p(tx)=| = G5 IO T MWL, =1) | -p(t; «).
and only if aIIASQ) that satisfy these conditions are negative. (9
Equations(3) and (4) yield the following equation for each
of the modesp{"(t), where we drop the subscriph and
superscripth for notational convenience:

We regard— (d/dt) + J(t) as an operator with known eigen-
valuesA\(MW=iw™ and considerxM (t)-W(t,—t,) to be a
perturbation, a technique familiar from quantum mechanics.
) . The effects of the controller on the Floquet exponents can be
(A+iQ)p(t)+p(1) expanded in powers of as

oy 1—em (AT A+iQ=N+iw+ x(t)k+0(x? 10

=J(t)~p(t)+7e‘(A+'“)“WM(t)~p(t—t|). w+ x(t)k+0(k%), (10
where the coefficieny(t;) is a complex valued function.

(6)  Any effects of interactions between the Floquet modes enter

only at x2. This is why it is convenient to index the modes

This equation is equivalent to by n and m for the purposes of the first-order perturbation
theory.
(A+iQ)p(t; k) +p(t;x) As mentioned above, Eq10) has an infinite number of

solutions forA andQ which approach IiR/7[7,8] or minus
=[O+ kM(OW(t,—1)]-p(t;x), (7)  infinity as the feedback gaity goes to zero. This behavior
arises from the essential singularity At=In|R|/z and the
where W(t,At) is the propagator defined by(t;«k) divergence af\ = —«, the latter arising only due to the non-
=W(t,At) - p(t—At;«) and zero latency time.
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FIG. 2. Schematic behavior of
the multiplier u in the complex
plane forg>0 andt,=0 in the
casew=/7. Panels(a) and (b)
illustrate the case of an initially
unstable multiplier of the system;

panels (c) and (d) illustrate the
case of an initially stable one.
Point A indicates the uncontrolled
multiplier of the system u

= —exp(\7), pointB shows where
the created multipliers start, point
C is the point where control is ob-
tained, and point® and D’ are
the points where control is lost.
The arrows indicate the directions
in which the multipliers move for
increasingg.

Just[4] has shown how the coefficient(t;) can be cal-
culated. Letu(t)=p(t;x=0) andv*(t) be the right and
left Floquet eigenmodes in the absence of contkck 0.
Both are periodic with periodr, i.e., u(t)=u(t+7) and

VE(t)=Vv*(t+7). Now let u(t)=expfwtiu(t) and
V* (t) = exp(—iwt)v* (t). These satisfy the equations

AO(H) +G(t)=J(1)- U(t),
NVE (1) — 0% (1) = V* (1) - J(1), (11)
with the boundary conditons:
U(t+7)=e'“m(t),
VE(t+ 1) =eT1OV* (1), (12)

The standard first-order perturbation theory result for th
coefficienty(t)) is

x(t)=e"“lp(t)), (13

where

fOTQ* (HM(t)-W(t,—t)u(t)dt

p(t)= (14

fTQ*(t)G(t)dt
0

Now p(t;) depends o, only throughW, and sinceu(t) is
7 periodic, W(t,—t,+ 7)u(t)=W(t,—t))u(t). Therefore,
p(t)) has to satisfy

p(ti+m)=e""“"p(t)). (19

e

Inserting Eq.(13) in Eq. (10) and neglecting second-order
terms yields

1— e (A+i)r
CO i “[A+iI(Q- )]t
A+iQ=N+io+p(t)ve ll—Ref(AHQ)T.

(16)

Following the treatment of Juft] for the R=0 case, we
note that this expression can be simplified in the case of a
so-called flip orbit wheraw= /7. Defining the frequency
deviationAQ=Q— =/, EQ.(16) can be rewritten as

1+e (A+iAQ)r
. _ —-(A+iA)y _— -
A+iAQ=N+p(t)ve '1+Ref(A+im)f'

17

Moreover, since all coefficients in E¢L1) are real, and
for = 7/ 7 the boundary conditions of E¢L2) are invariant

under complex conjugatiorﬁ(t) and \7*(t) can always be
chosen to be real valued. From E@4) it is then clear that
p(t)) is real and from Eq(15) we havep(t,)= —p(t;+ 7).

We emphasize thaﬁ(t), \7*(t), and p(t;) are also real
valued in the case of zero torsion, i.e=0. In this case,
x(t)=p(t) and p is 7 periodic: p(t))=p(t,+7). For
torsion-free perturbations, E¢L6) becomes

e (AT

A+iQ=N+ x(t) ye A0 (18

1_Re*(A+iQ)‘r'

Although a nonzero torsion of all unstable eigenmodes is a
necessary condition for possible contid@], the case of
A<0 and =0 might be interesting because an initially
stable eigenmode can become unstable when the control
force is applied and thus limit the domain of control.
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FIG. 4. Domain of control in they-y plane forR=0 in the case
FIG. 3. Domain of control in the,-y plane for different values ot (1) =A sinf(@/7)t—¢]. Panel(a) shows the case of an UPO
for A7:—0.3,0.7,1.5 ang(t;)=—1. Panel(a) shows the case of (A7=1) with A=2.5 for different values of the phase:
TDAS, R=0, and panelb) the case ofR=0.68. The branches 0.1r,0.3m,0.97. Panel(b) shows the case of a stable orbit
indicate combinations fot; and y for which the real part of the  _ _ 3) with A=0.6 for ¢: 0,0.7r. The shaded regions show the
Floquet exponent\ changes sign and thus stability. domain of stability for¢=0.37 and ¢=0, respectively.
IIl. FLOQUET EXPONENTS FOR FIXED LATENCY TIME . . .
tion (19) shows that negativ® decreases the maximum la-
To understand the solutions to E@.7), it is helpful to  tency time. We therefore focus d&=0 from here on.
first consider their behavior for fixed values of  Another way to visualize the effects of the control scheme
g=—p(t))y. A detailed discussion of the effects of varia- is to consider how the Floquenultipliers (as opposed to
tions of p with t; will be presented in Sec. IV. exponents evolve with varying g. We consider again
The behavior of the real and imaginary parts of the Flo-the casew=n/7. The Floquet multipliers are defined by
quet exponent in Eq(17) can be seen in Fig. 1. In each M(n)ze(Aﬁr?Mimﬁn”’)f_ Dropping the subscripth and the su-

panel, curves are shown for both=0 (thick lines and_t, pénrscriptn, Eq. (17) can be rewritten as
= 7/2 (thin lines. For g=0 (no contro), the real partA is

equal tox. For increasing the value ofA decreases, reach-

ing 0 atg=\(1+R)/2, and then changing its sign; thus the ILLzeXF{)\T—gT
orbit becomes stable. Further increasegaisually leads to a

collision with an exponent created by the control scheme, . ) o ] .
forming a complex conjugate paisee Figs. (b), 1(d), and  Stability is achieved if all multipliers sgugMKl, i.e., the
1(f), except for the thick line in Fig.(f)]. After the collision, multipliers u are located inside the unit circle in the complex
A then begins to increassee Figs. (a), 1(c), and 1e), plane.

except for the thick line in Fig.(®)]. For g sufficiently large, Considering the real and imaginary parts of E20) and
A becomes positive again and control is lost. numerically following the roots of each equation in the com-

Note that agy increases from zero, an infinite number of Plex plane(using MATHEMATICA ), we observe the following
solutions to Eq(17) emerge from ItR/ as complex conju- four top_ologlcally different cases depenqlng on thg signs of
gate paird7,8]. In order to collide with the single exponent A @ndg in the absence of latenct=0, as illustrated in Fig.
coming from A +iw)7, one pair has to become real and 2. ] ]
separatésee Fig. 1d)]. If this does not happen, a crossing of (1) 9>0;x>0: [Figs. 2a) and 2b)] As g increases, the
branches can occur. After the crossing, the complex Conjulargest Floquet multiplier starts outside the unit circle at

pt+l
mtR

Mtl/r] (20)

gate pair becomes the branch with the largesand thus ~—€XPQ7) on the real axis indicated by poi# moves to-
responsible for the stability of the systdsee thick lines in Wards the unit circle, and eventually crosses it. Meanwhile,
Figs. 1e) and 1f)]. an infinite number of complex conjugate pairs spread out

Figure 1 illustrates that increasing the latency tipe from u=R indicated by point, one of which will deter-
and/or decreasing leads to a smaller range gffor success- Mine the stability range. Two scenarios are possible. One
ful control. In fact, one can compute a maximum latencyPOssibility is that one pair recombines on the real axis and
time 4, for which control can be achieved, which corre- ©ne of the multipliers collides with the multiplier originating
sponds to the case where the collision of the two branched! POINtA. After the collision they form a complex conjugate
occurs atA=0 as in the thin line in Fig (). Using the P&ir and cross the unit circle agdisee Fig. 2a)]. The other
imaginary part of Eq(17) to eliminate the factor of in the ~ POssibilitiy is that the created pair becomes the largest mul-
real part of the same equation and settingequal to zero, tPlier, tums around, and crosses the unit cirtsee Fig.
one has to search for nontrivial solutions ). A condi-  2(D)]- The first case corresponds to the thick lines in Figs.
tion for the existence of such a solution is 1(c) and Xd), the second to Figs.(& and 1f). .

(2) g>0;\<0: [Figs. 4c) and 2d)] Similar to the previ-
1 7R-1 ous case, the largest Floquet multiplier starts-axp(\7) on
Ustmax=y T5 Ry 1 (19 the real axis, this time inside the unit circle. It moves towards
the origin for increasingg and may either collide with a
This agrees with the result of Rd#] for R=0. For larger multiplier created by the control force as in FigcRor con-
latency time, control is not possible to first orderinEqua-  tinue towards zero, while a complex conjugate pair becomes
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FIG. 5. Domains of control in thg-vy plane. Panelé&) and(b): Experimental result from a diode resonator circuit investigated by Sukow
et al. This is a reproduction of Fig. 18 from Rd8]. In this system, the period was equal to 100 ns. The scale for the gain is determined
by the experimental value of the factéif de in Eq. (3), which has implicitly been assumed to be unity in our theoretical discussion. Panels
(c) and (d): Domains determined from theory for two Floquet exponents with parameters chosen to reproduce as closely as possible the
experimental results &) and(b). The thick and thin dashed lines show the domains corresponding to the two different (seel&sg. 4.
The shaded regions show the combined domain of control. The parameter valukgrar®.7, A,7=—1.6, w;=w,=m/1, py(t))
=1.3sif(7/7)t—0.67], andp,(t)) =1.4 sif(a/7)t]. The two panels show different values of the control paranfetfihe special latency
times marked are used to determine the parameter values as explained in the text.

the largest multiplier as in Fig.(@). In both cases all multi- not intersect if the system is already stable, ie50.

pliers stay inside the unit circle for increasiggfor A <0 the The actual domain of control is a distortion of Fig. 3

system is stable for atj>0. owing to the variation op with t,. The distortion is simple
(3) g<0;A>0: The largest multiplier starts atexp(\7)  to compute, however, since changing the valug aé en-

on the real axis and goes tex, thus control is never suc- tirely equivalent to changing. Thus the values oy on the

cessful. All other multipliers created by the control schemeupper and lower curves at a particular valug,odire simply

stay inside the unit circle for decreasigg multiplied by —1/p(t;). Note that these variations jm can-
(4) g<0;\<0: The largest multiplier starts inside the not change theatio of the upper and lower values of
unit circle, crosses it, and goes tec. More mulitpliers For eigenmodes witlw = 7/ 7, the antiperiodicity op(t;)
created by the control scheme cross the unit circle for furtheand the fact thap(t,) is real require thap(t;) has at least
decrease of). one root in the intervdl0,7]. We assume for convenience a
sinusoidal formp(t;) = A sin((w/7)t,— ¢). Figure 4 shows the
IV. SHAPES OF THE DOMAIN OF CONTROL domain of control for different values of the phage In
IN THE t;-y PLANE
For a discussion of the domain of control in they plane _A1=-03
let us consider firsp(t;)= —1. We will show later how the 2 7&217 _9 -
coefficientp(t;) scales the domain at every value of the la- ke W
tency time.
For each\, the lower branch in Fig. 3 is the horizontal Y
line y=X(1+R)/2, where there is a flip instability associ- 1 .

ated with the real exponent originating framat y=0. The
upper branch corresponds to a Hopf bifurcation that can arise
in two different ways:(1) the relevant complex conjugate

pair of exponents originates in a collision between the branch O 97 02 03 04 05
associated withh and a real eigenvalue created by the feed- t./1T

back scheme, as in Fig(a or 1(c); or (2) the relevant com- l

plex conjugate pair originates at|RVz, as shown by the FIG. 6. Domain of control for two noninteracting Floquet modes

thick lines in Fig. 1d). It can be seen that increasi®jand  )\,7=2, \,r= —0.3, andw, = w2= /7 for R=0.68. The param-
decreasing\ increases the domain of control at fixgdand  eters ¢ and A are chosen agh;=0.657,A;=2.5, and¢,=0.1,
increases . [see Eq(19)]. The upper and lower curves do A,=—3. The shaded area is the effective domain of control.
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each panel, the shading indicates the stable domain for one It may appear that by adjusting the full functiops and
choice of¢. p» one could fit arbitrary shapes of the stability domains, and
If a root of p(t;) appears before the upper and lowerit is true that many types of undulations in the domain
branches intersect, the domain of control will include a re-boundaries could be fit. Moreover, one can always appeal the
gion with negative feedback gaip, as shown in Fig. @). lack of robustness to noise to explain why very narrow re-
Since the domain of control at fixégdscales like 14, diver- ~ gions of a predicted stability domain would not show up in
gences appear at the values of the latency time for whicthe experimental data. There are, however, some features of

t;) vanishes. Foh <0, shown in Fig. ), the upper and the experimental data that cannot be reproduced by the
I’z)(w%r branches still do not intersect.g ® PP theory presented here. In particular, consider the width of the

The case\ <0 can be important because it can reduce th egion at negativey for R=0.68. _The upper and lower
domain of control, as shown in Figs(ch and d), when the ound_qr]es .Of the right half of this region bofch represent
uncontrolled s stém has exponents>0 andx ’<0 Since instabilities in the same mode, the mode associated wjth

y b §> 2= For a fixed value of,, then, the ratio of they’s at these
second-order terms are neglected in the perturbation theor

. . oundaries is independent @f. The substantially larger
the different Floquet modes of the system do not interac idth of the experimental stability domain cannot be ob-

yvith each other, so t_he effective_ domain of control is just the ;o by adjusting any of the parameters in our theory. In-
intersection of the single domains for each exponent. cluding additional modes or making a different assumption
Domains similar to those shown in Figsicband 8d)  apoutw, would not help, since the narrowness of the theo-
have been observed in experiments on high speed diode res@tical domain is determined by,. We therefore conclude
nator circuits. The analogous figure obtained from experithat second-order effects are significant in the experimental
ments is reproduced here as Figéa)@nd 3b) to facilitate  system. These effects may involve interactions between
comparison. To construct the theoretical figure, parametemodes associated with differents or just interactions of
values are adjusted to reproduce several features of the eodes within the set generated by alone.
perimental results. From the experiments, three parameters Qur analysis can also be used to explore the possibilities
are known: the weighting parametey the largest Lyapunov  for qualitatively different domain shapes. An interesting ex-
exponent , and, since the instability is a flip, the frequency ample is obtained whei,, the phase associated with the
w, =/ 7. Equation(19) for the \; mode then gives an im- subleading mode of the uncontrolled system is taken to be
mediate prediction forty,,,, the largest latency time for 0.17 (and A,<0). As shown in Fig. 6, this can lead to a
which control can be achieved. The agreement with the exsituation in which a nonzero latency time isquired for
periment is reasonable, especially given that the very narrowffective control.
tails of the domains may be hard to detect in experiments.
We make the plausible assumption that the second largest
Floguet mode is a stable flip, so,==/7. In our simple
model, there are then five parameters that determine the we have discussed the effects of latency time on a feed-
shapes of the domains of contraly7 (the real part of the pack control scheme known as ETDAS. Using the Floquet
subleading exponentA; and A, (the amplitudes of the theory and carrying out a first-order perturbation theory in
variation inp; andp,), and the phaseg; and ¢, (which  the feedback gain, we have shown that nontrivial domain
determine wherg; andp, vanish. shapes can arise in the plane parametrized by feedback gain
To fix these five parameters, we consider Re0.68  and latency time. Within the first-order theory, we find that
domain. The phas¢,; must lie somewhere betweepr and  no control is possible above a maximum latency time deter-
t,m in order for the divergence in Ad/and associated sign mined solely by the Floquet exponent of the most unstable
change in the domain of control to be right. From the factmode in the uncontrolled system. We also find that Floquet
that the onset of divergence is not evident yettgtwe modes that are stable in the uncontrolled system contribute
estimate thatp, is close tot,7 and fix it at 0.6r. From the significantly to the overall stability picture, reducing the do-
fact that the boundary of the subleading mode does not agmain of control substantially.
pear to cut off the domain negr=0, we take the divergence The theory accounts well for qualitative features of the
of p, to occur there, requiringp,=0 or 7. The remaining stability domains observed in experiments. As expected,
parametersA;, A,, and\,7 are adjusted to fit,, t,, the larger values of the ETDAS paramefegive larger stability
latency times(in units of ) corresponding to the limits of domains. Detailed comparison indicates, however, that
the domains, ang(t,), the gain at which the lower domain second-order effects are experimentally observable.
of control is cut off att,. The parameters determined from
the R=0.68 data are used for tHeR=0 plot as well since
p(t)) is determined purely from the uncontrolled system.
The primary conclusion we draw is that the theory does We would like to thank E. Schip W. Just, A. Amann, .
give qualitative insight into the structure of the stability do- Harrington, and D. Gauthier for useful conversations. This
mains. Even with our crude constraints on the fornp@f), = work was supported by NSF Grant No. PHY-98-70028 and
the general shapes of the domains are reproduced surprigithin the framework of the exchange program between TU
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